Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bis[2-(diphenylphosphinoyl)benzene] disulfide

P. Perez-Lourido,^a J. A. Garcia-Vazquez,^b* J. Romero,^b P. Fernandez,^b A. Sousa-Pedrares^b and A. Sousa^b

^aDepartamento de Quimica Inorganica, Universidad de Vigo, 36200 Vigo, Spain, and ^bDepartamento de Quimica Inorganica, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain Correspondence e-mail: qijagv@usc.es

Received 11 January 2000 Accepted 1 February 2000

Data validation number: IUC0000031

The title compound, $[2-Ph_2P(O)C_6H_4S]_2$ or $C_{36}H_{28}O_2P_2S_2$, obtained by electrochemical oxidation of 2-(diphenylphosphino)benzenethiol, has twofold crystallographic symmetry. Principal dimensions include S–S 2.0212 (15) Å, S–C 1.786 (3) Å and C–S–S–C 81.34 (14)°.

Comment

Metal phosphinothiolate complexes can be prepared easily by an electrochemical procedure starting from a sacrificial metal anode in a cell containing the ligand in an appropriate solvent. In this way, the synthesis of Co, Ni (Perez-Lourido *et al.*, 1998) and In (Perez-Lourido, Romero *et al.*, 1999) compounds with 2-(diphenylphosphino)benzenethiol and similar ligands have been reported. In attempts to prepare gallium complexes by electrochemical oxidation of a gallium anode in an acetonitrile solution of 2-(diphenylphosphino)benzenethiol, white crystals of $[2-Ph_2P(O)C_6H_4S]_2$, (I), suitable for X-ray diffraction studies were isolated and its crystal structure determined. The compound is the result of the electrochemical oxidation of $[2-Ph_2P-C_6H_4SH]$ to gave the disulfide in a process such as:

Cathode: $2[2-Ph_2P-C_6H_4SH] + 2e^- \rightarrow H_2(g) + 2[2-Ph_2P-C_6H_4S]^-$ Anode: $2[2-Ph_2P-C_6H_4S]^- \rightarrow [2-Ph_2PC_6H_4S]_2 + 2e^-$.

The structure of the compound shows that oxidation has ocurred at the P atom, and the source of oxygen is surely oxygen dissolved in acetonitrile. Such a facile oxidation of phosphine to phosphine oxides has been observed already in similar complexes (Block, Kang *et al.*, 1989). The molecular structure is similar to related organic disulfide compounds such as bis(4,6-dimethylpyrimidyl) 2,2'-disulfide (Castro *et al.*, 1995) and bis[6-(*tert*-butyldimethylsilyl)-2-pyridyl] disulfide (Tallon *et al.*, 1995). The molecule shows a twofold axis through the S–S bond and it has an equatorial conformation

with a torsion angle $C2-S1-S1^{i}-C2^{i}$ of 81.34 (14)° [symmetry code: (i) -x, y, $\frac{3}{2} - z$]; this angle is within the $90\pm10^{\circ}$ range found in most aromatic disulfides. In addition, the torsion angle $C1-C2-S1-S1^{i}$ is $-172.9 (2)^{\circ}$. This value corresponds with an equatorial conformation in the Shefter classification (Shefter, 1970). The S1-S1ⁱ bond distance of 2.0212 (15) Å is close to the average value of 2.0 Å suggested for organic disulfides and almost equal to those found in bis[6-(*tert*-butyldimethylsilyl)-2-pyridyl] disulfide [2.032 (3) A; Tallon et al. 1995] or in bis(4,6-dimethylpyrimidyl) 2,2'-disulfide [2.017 (1) Å; Castro *et al.* 1995]. In addition, the C2-S1 bond length, [1.786 (3) Å] is similar to those found in other disulfides with an equatorial conformation (Highasi et al., 1978) and consistent with a C-S single bond. The P1-O1 bond distance [1.478 (2) Å] is almost equal to the distance observed in $[2Ph_2P(O)6-(Me_3Si)-C_6H_3SH]$, [1.493 (3) Å; Perez-Lourido, Garcia-Vazquez et al., 1999] and in agreement with the value proposed for a P=O bond (Allen et al., 1987). The phenyl rings are practically flat with unremarkable bond distances and angles. Bond angles around the P atoms are in the range of 104.33 (12)–113.01 (12) $^{\circ}$ expected for a tetrahedral environment around a P atom.

Experimental

The synthesis of 2-(diphenylphosphino)benzenethiol was carried out using slight modifications of the standard literature procedure involving lithiation of benzenethiol (Block, Ofori-Okai & Zubieta, 1989) using Schlenk techniques and dry solvents. The electrochemical procedure used was similar to described (Highasi *et al.*, 1978). A solution containing 0.20 g of the ligand in 50 ml of acetonitrile and a few mg of tetramethylammonium perchlorate as electrolytic support was electrolyzed in a cell with a gallium anode and a platinum cathode over a period of 2 h using 20 mA of intensity. No metal was found to be dissolved from the anode. The resultant solution was filtered off and then air concentrated. White crystals of [2-Ph₂P(O)C₆H₄S]₂, suitable for X-ray diffraction studies were isolated.

Crystal data	
$C_{36}H_{28}O_2P_2S_2$	$D_x = 1.399 \text{ Mg m}^{-3}$
$M_r = 618.64$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 25
a = 13.249 (3) Å	reflections
b = 10.801 (2) Å	$\theta = 12.54 - 16.06^{\circ}$
c = 21.193 (5) Å	$\mu = 0.324 \text{ mm}^{-1}$
$\beta = 104.50 \ (2)^{\circ}$	T = 203 (2) K
$V = 2936.3 (11) \text{ Å}^3$	Plate, light brown
Z = 4	$0.25 \times 0.25 \times 0.20 \text{ mm}$

electronic papers

Data collection

Nonius CAD-4 MACH-3 diffractometer ω -2 θ scans 2697 measured reflections 2575 independent reflections 1848 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.091$ S = 1.0332575 reflections 246 parameters H atoms refined 6 standard reflections every 150 reflections intensity decay: none $w = 1/[\sigma^2(F_o^2) + (0.0376P)^2 + 1.9871P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

 $\Delta \rho_{\rm max} = 0.294 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.243 \text{ e} \text{ \AA}^{-3}$

 $\theta_{\rm max} = 24.97^{\circ}$

 $h = 0 \rightarrow 15$

 $k = 0 \rightarrow 12$

 $l = -25 \rightarrow 24$

Data collection: Nonius CAD-4 software; cell refinement: Nonius CAD-4 software; data reduction: Nonius CAD-4 software; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Block, E., Kang, H., Ofori-Okai, G. & Zubieta, J. (1989). *Inorg. Chim. Acta*, 166, 155–157.
- Block, E., Ofori-Okai, G. & Zubieta, J. (1989). J. Am. Chem. Soc. 111, 2327– 2329.
- Castro, J., Romero, J., Garcia-Vazquez, J. A., Castiñeiras, A., Sousa, A. & Zubieta, J. (1995). *Polyhedron*, **14**, 2841–2847.
- Highasi, L. S., Lundeen, M. & Seef, K. (1978). J. Am. Chem. Soc. 100, 8101-8106.
- Perez-Lourido, P., Garcia-Vazquez, A., Romero, J., Sousa, A., Zubieta, J. & Bock, E. (1999). *Inorg. Chem.* 38, 538–544.
- Perez-Lourido, P., Romero, J., Garcia-Vazquez, A., Sousa, A., Zubieta, J. & Maresca, K. (1998). Polyhedron, 17, 4457–4464.
- Perez-Lourido, P., Romero, J., Garcia-Vazquez, A., Sousa, A., Zubieta, J. & Maresca, K. (1999). Inorg. Chem. 38, 1293–1298.
- Shefter, E. (1970). J. Chem. Soc. B, pp. 903-906.
- Tallon, J, Garcia-Vazquez, J. A., Romero, J., Louro, M. S., Sousa, A., Chen, Q., Chang, Y. & Zubieta, J. (1995). *Polyhedron*, 14, 2309–2317, and references therein.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.